National Acoustic Laboratories Library
Image from Google Jackets

Analysis and evaluation of irregularity in pitch vibrato for string-instrument tones

By: Material type: TextTextOnline resources: In: Acoustics 2015 Hunter Valley 15-18 November 2015Abstract: In describing musical performances, the use of the term vibrato can imply any periodic (or quasi-periodic) fluctuation in pitch, amplitude, or timbre of a sustained musical tone. The current study focused only upon analysis and evaluation of ‘pitch vibrato’ observed in recorded performances on a number of string instruments (three violins, a viola, a cello, and a bass violin). In order to gain a better understanding of the identifiable auditory attributes associated with the perception of pitch vibrato as performed, a multi-parameter vibrato synthesis algorithm was employed in the creation of a set of stimuli for evaluation by human listeners. Besides rate and depth of pitch modulation, a third parameter was included in the synthesis that allowed for a manipulation of the quasi-periodic nature of simulated vibrato intended to mimic performed vibrato. Control for this third parameter, effectively capturing the amount of irregularity in pitch modulation, was enabled via adjustment of the Q value of a resonant low-pass filter that was used to either spread or concentrate a modulation signal’s energy around the nominal pitch modulation frequency (vibrato rate). A high Q value was associated with pitch modulation that sounded very regular, practically sinusoidal at the sub-audio vibrato rate (when the Q value exceeded around 30). Lower Q values were associated with irregular sounding pitch modulation that was heard as more rough, and could become very rough at the lowest Q values (below Q=3). Performances recorded without substantial pitch vibrato were processed via a delay-modulation algorithm that employed a collection of the synthesized modulation signals in an attempt to match the character and quality of vibrato performances recorded on the same instruments. A group of fifteen listeners was employed to determine how detectably different the synthetic vibrato was as the Q value was varied, and to what extent changes in Q value influenced the perceived ‘fluctuation strength’ of the synthetic vibrato.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

In describing musical performances, the use of the term vibrato can imply any periodic (or quasi-periodic) fluctuation in pitch, amplitude, or timbre of a sustained musical tone. The current study focused only upon analysis and evaluation of ‘pitch vibrato’ observed in recorded performances on a number of string instruments (three violins, a viola, a cello, and a bass violin). In order to gain a better understanding of the identifiable auditory attributes associated with the perception of pitch vibrato as performed, a multi-parameter vibrato synthesis algorithm was employed in the creation of a set of stimuli for evaluation by human listeners. Besides rate and depth of pitch modulation, a third parameter was included in the synthesis that allowed for a manipulation of the quasi-periodic nature of simulated vibrato intended to mimic performed vibrato. Control for this third parameter, effectively capturing the amount of irregularity in pitch modulation, was enabled via adjustment of the Q value of a resonant low-pass filter that was used to either spread or concentrate a modulation signal’s energy around the nominal pitch modulation frequency (vibrato rate). A high Q value was associated with pitch modulation that sounded very regular, practically sinusoidal at the sub-audio vibrato rate (when the Q value exceeded around 30). Lower Q values were associated with irregular sounding pitch modulation that was heard as more rough, and could become very rough at the lowest Q values (below Q=3). Performances recorded without substantial pitch vibrato were processed via a delay-modulation algorithm that employed a collection of the synthesized modulation signals in an attempt to match the character and quality of vibrato performances recorded on the same instruments. A group of fifteen listeners was employed to determine how detectably different the synthetic vibrato was as the Q value was varied, and to what extent changes in Q value influenced the perceived ‘fluctuation strength’ of the synthetic vibrato.

Powered by Koha