National Acoustic Laboratories Library
Image from Google Jackets

Auditory steady-state responses as neural correlates of loudness growth

By: Contributor(s): Material type: TextTextSubject(s): Online resources: In: Hearing Research (September 2016)Abstract: The aim of this study was to find an objective estimate of individual, complete loudness growth functions based on auditory steady-state responses. Both normal-hearing and hearing-impaired listeners were involved in two behavioral loudness growth tasks and one EEG recording session. Behavioral loudness growth was measured with Absolute Magnitude Estimation and a Graphic Rating Scale with loudness categories. Stimuli were sinusoidally amplitude-modulated sinusoids with carrier frequencies of either 500 Hz or 2000 Hz, a modulation frequency of 40 Hz, a duration of 1 s, and presented at intensities encompassing the participants’ dynamic ranges. Auditory steady-state responses were evoked by the same stimuli using durations of at least 5 min. Results showed that there was a good correspondence between the relative growth of the auditory steady-state response amplitudes and the behavioral loudness growth responses for each participant of both groups of listeners. This demonstrates the potential for a more individual, objective, and automatic fitting of hearing aids in future clinical practice.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

The aim of this study was to find an objective estimate of individual, complete loudness growth functions based on auditory steady-state responses. Both normal-hearing and hearing-impaired listeners were involved in two behavioral loudness growth tasks and one EEG recording session. Behavioral loudness growth was measured with Absolute Magnitude Estimation and a Graphic Rating Scale with loudness categories. Stimuli were sinusoidally amplitude-modulated sinusoids with carrier frequencies of either 500 Hz or 2000 Hz, a modulation frequency of 40 Hz, a duration of 1 s, and presented at intensities encompassing the participants’ dynamic ranges. Auditory steady-state responses were evoked by the same stimuli using durations of at least 5 min. Results showed that there was a good correspondence between the relative growth of the auditory steady-state response amplitudes and the behavioral loudness growth responses for each participant of both groups of listeners. This demonstrates the potential for a more individual, objective, and automatic fitting of hearing aids in future clinical practice.

Powered by Koha