000 01997nam a22001697a 4500
003 OSt
005 20151016160940.0
008 151016b xxu||||| |||| 00| 0 eng d
040 _cNational Acoustic Laboratories
100 _aXua,b , Qin
245 _aTemporal integration reflected by frequency following response in auditory brainstem
520 3 _aAuditory temporal integration (ATI) has been widely described in psychoacoustic studies, especially for loudness perception. Loudness increases with increasing sound duration for durations up to a time constant about 100 ~ 200 ms, and then loudness becomes saturated with more duration increase. However, the electrophysiological mechanism underlying the ATI phenomenon has not been well understood. To investigate ATI at the brainstem level of auditory system and its relationship to cortical and behavioral ATI, frequency follow response (FFR) was acquired in our study. Simultaneously, ATI in auditory cortex was evaluated by cortical response P1. Behavioral loudness and electrophysiological measures were estimated from normal-hearing young adults for vowel /a/ whose durations varied from 50 ms to 175 ms. Significant effects of stimulus duration were found both on FFR and P1 amplitudes. Linear regression analysis revealed that as stimulus duration increased, brainstem FFR amplitude was significantly associated with cortical P1 amplitude and behavioral loudness, which confirmed the existence of temporal integration in auditory brainstem. Moreover, behavioral loudness ATI was better predicted using brainstem and cortical measures together than merely using each one separately, indicating an interplay and coordination for ATI across the three levels along auditory pathway.
650 _aAuditory temporal integration (ATI), frequency following response (FFR), cortical response P1, loudness
700 _aDatian Yea,
773 0 _g26 (2015) S767–S778
_tBio-Medical Materials and Engineering
942 _2udc
_cARTICLE
999 _c2503
_d2503